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An interacting particle system (Glauber dynamics) which evolves on a finite 
subset in the d-dimensional integer lattice is considered. It is known that a 
mixing property of the Gibbs state in the sense of Dobrushin and Shlosman is 
equiwdent to several very strong estimates in terms of the Glauber dynamics. 
We show that similar, but seemingly much milder estimates are again equivalent 
to the Dobrushin-Shlosman mixing condition, hence to the origimd ones found 
by Stroock and Zegarlinski. This may be understood as the absence of inter- 
mediate speed of convergence to equilibrium. 

KEY WORDS:  Relaxed criteria; the Dobrushin-Shlosman mixing condition; 
Glauber dynamics; convergence to equilibrium. 

1. I N T R O D U C T I O N  

A standard way to describe a mixing property of a Gibbs state is to 
estimate the difference of the expectations of a local observable with respect 
to a finite-volume Gibbs state with different boundary conditions. For 
example, the Dobrushin-Shlosman mixing condition which we will discuss 
can roughly be stated as follows: the difference mentioned above is 
exponentially small in the distance between the support of the observable 
and the sites at which the boundary conditions are different [cf. (2.16)]. 
On the other hand, since the mixing property of a Gibbs state reflects the 
rapid relaxation of the Glauber dynamics, the mixing property can be 
expressed in the following different ways in terms of the Glauber dynamics: 
(a) estimate of the logarithmic Sobolev constant, (b) estimate of the spec- 
tral gap, (c) estimate of the rate of convergence (the difference between the 
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semigroup at time t and its equilibrium). Stroock and Zegarlinski ~t6~ suc- 
ceeded in rephrasing the Dobrushin-Shlosman mixing condition in three 
ways described above, which we will review as Theorem 3.1 below. 

The purpose of this paper is to present relaxed criteria of the Dobrushin-  
Shlosman mixing condition of types (a)-(c),  which are respectively condi- 
tions (2a)-(2c) in Theorem 3.2, our  main result. Technically, the derivation 
of the original Dobrushin-Shlosman mixing condition fi'om these relaxed 
criteria is based on the fact that the exponential decay in the statement of 
the Dobrushin-Shlosman mixing condition is equivalent to a certain poly- 
nomial decay. This point is also made clear as conditions (2d) and (2e) in 
Theorem 3.2. These relaxed criteria are potentially useful to check the 
Dobrushin-Shlosman mixing condition, which is often accepted as an 
assumption to do something with, but is not always easy to verify in practi- 
cal applications. Since our result is based on the very old and well-known 
idea that "an exponential mixing follows from a certain polynomial mix- 
ing," there are many results with the same sprit in the earlier literature. The 
relation between these earlier results and ours will be discussed in the series 
of remarks following the statement of Theorem 3.2. 

2. B A S I C  D E F I N I T I O N S  

The lattice. We will work on the d-dimensional integer lattice ZU= 
{x=(v .  ~,~=~'/i " x ~  Z}, on which we consider the / ' -norm;  Ix[ = maxL .<~a [.vii. 
For a set A ~ Z a, diana A and [A[ stand, respectively, for its diameter and 
the number of the points it contains. We write A ~ Z a when 1 ~< [A[ < c~ 
and define a family s / b y  

, e /=  {A; A c =  Z a} (2.1) 

The distance between two subsets A~ and A 2 of Z a will be denoted by 
d(A~, A+). For r>~ 1, the r-boundary of a set A is defined by 

O,.A = { x 6 A ;  d(x, A)<,r} (2.2) 

The value of r will eventually be chosen as an upper bound r o of the range 
of the interaction we consider [cf. (2.5) below]. For v E Z a and an integer 
m>~ 1, we define a subset M,.(m) of ~q' as the totality of A c ~ Z  a of the 
following form: 

,4 = {x~Za ;  v i+mai<.x~<vi+mb i for i =  1 ..... d} (2.3) 

where ai and bi are integers with ai<bi.  In particular, the class ~,.(m) 
consists of boxes with every sidelength a positive multiple of m. We define 
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a subset cg,.(m) of  .~,.(m) as the totali ty of cubes in .~,.(m), i.e., the totali ty 
of  A c c  Z a of the form (2.3) with b , -  a, ( 1 ~< i ~ d) identical. 

The co~gurations. We take a finite set S as a single spin space and 
2 will stand for the uniform distribution on S; 2 ( d t ) =  (1/[SI)Z.,.~.s.6,.(dt). 
Configurat ion spaces are defined as follows: 

~.. ,={~=(,T. , .} ..... , ; a , . e S } ,  

= s 

A cz Z d 

For  A c Z a and (e, co) e f2-', g.t �9 oJ.~, denotes the following configuration: 

(~.~ �9 co., ),. = { ; "  if x e A  
�9 .,. if x ~ A  

For  f :  g2.. a ~ R we introduce the notat ions 

Vxf(or)  = !s.,. J '(~x" a.v,) 2V(d~x) --f(cy), 

Ilf l l --  sup If(a)l  

X c 2 c  Z d 

IIIfIll : Z IIV.,.fll 
. v  ~ A 

osc.,.Kf)= sup {If(o')-f(~')l;a-~'offx} 
In, a') E.Q 2 

d f =  { x ~ A ;  f i s  not  a constant  with respect to a.,.} 

The function spaces cg and ~ (A c Z a) are defined, respectively, by 

= {f :  va --+ R; la/I < oo} 

~ ,  = {f :  ~--* R; Arc  A} 

The interaction and finite-vo&me Gibbs states. A family @ =  
{ qSx e cgv: X c c  Z a} is called a bounded, finite-range interaction if it satisfies 
the following: 

(@-1) There exists M 0 < oo such that  

[]q~H := sup ~. [[~xII~<Mo (2.4) 
.v~ Z d A': A'~ .x" 
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(~-2)  There exists r o<  co such that 

r ( ~ )  := sup{ diam(X); ~ x  ~ 0} ~< r o (2.5) 

I1~11 in (2.4) and r(O) in (2.5) are called the norm and the range of the 
interaction, respectively. 

From here on we fix a bounded, finite-range interaction ~.  For  each 
A c ~  Z a we define the Hamiltonian HA ~ ~f by 

H.  = ~ q~x (2.6) 
X: X c~/I  # O 

For each A c c  Z d and o9 e s we define the f ini te-volume Gibbs s t a t e  ~l A ... .  

as the probability measure on I-2]j in which each configuration a.z e g2~ 
appears with probability 

/1 A' "( {a:,} ) = exp - H~,(a,, .  COA,. ) 
Z .  s .... (2.7) 

where Z A .... is the normalizing constant. 

The stochastic dynamics. We introduce now for the model above the 
time evolution called Glauber dynamics. We define for each x ~ Z  d an 
operator A.,.: c.g ~ ~ by 

A,.f(a)  = ~" c.,.(a, s)(f(a . " s ) - f ( a ) )  
s ~ S  

where a . "s  is a configuration obtained from a by replacing a,. by s and the 
coefficient c,.(a, s), which is called the f l ip  rate, is required to satisfy the 
following. 

(R- l )  Boundedness: There exist positive constants _c and ? such that 

c ~ c , . ( a , s ) < ~ 6  for all x E Z  a, aet-2, s s S  

(R-2) Finite range: There exists r~ ~> 0 such that 

),(x, y) = 0 if I x -  Yl > r~ (2.8) 

where 

( 
),(x, y ) =  sup ~ [c . , (~r , s ) -c . , . (a ' , s ) [ ;a=a '  of fy~  (2.9) 

(a.a'~ ~E22 ( s ~ S  J 
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(R-3) Detailed balance condition: For all x ~ Z  d, a~/2 ,  and 
(s , s ' )eS  2, 

~."~.~({s})c.,_(G."s,s')=~."~.O({s'})c,.(o.-"s',s) (2.1o) 

Remark 2.1. This is a very technical remark and is relevant only 
when one would like to identify a numerical constant M, which will appear 
in Theorem 3.2, Lemma 4.1, and Lemma 4.2. We set 

M = s u p  ~ y(x,y) 
x y :  y ~ .,; 

Mi = Z )',(y) 
p E Z d 

= (2r,  + 1) d ISl ( e - c )  (2.11) 

where ?(-, .  ) is defined by (2.9) and 

) , , (y)= {~S[ (g--_c) otherwiseif [Y[ ~<r, (2.12) 

The function ),(., .), together with the constant M plays fundamental role 
in analyzing a particle system (ref. 10, Chapter I). The function y~(.) is 
introduced as a shift-invariant object which bounds ),( .,. ) from above. 
Note that ),(x, y) <~ y~(x-  y) and hence M ~  M~. 

For fixed A c c Z  d and co el2  we define an operator A A " " :  ~.4 ~ ~'~l 

and the associated semigroup (T) 4'''),/>o by 

AA' ' f (a)  = ~ A.,.f(a.j'OaA,), f ~(gA 
A" ~ A 

T) ~" '" = exp tA "~ .... 

We then see from (2.10) that for all {f,  g} =(gj  

g~,. ,,(f, g) a~ __pA. ,,,(fA A, ,,g) 

=�89 Z ~ fP'"'"(da) c x ( a , s ) [ f ( a " ~ s ) - f (  a)] 
A" E / I  S ~ S ' 

x [g(a ." s) - -g(r  (2.13) 

We have defined A A .... and T; ~ .... as operators acting on ~f~. But we 
will extend their domain of definition to cg by applying them to 
"a~--* f ( a  A .co~,)." 
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The spectral gap, the logarithmic Sobolev constant, and the Dobrush#~- 
Shlosman mixing condition. We now introduce a couple of quantities and 
a notion which plays crucial roles in analyzing the long-time behavior of 
the Glauber dynamics. We define the inverse spectral gap )'so(A, o)) as the 
smallest ), for which the following inequality is true for all j '~  c,g: 

,u,'. '11 f - . u "  "71 ') ~< ~,~"' <"(f, f )  (2.14) 

Similarly, we define the logarithmic Sobolev cO#TStallt )'Ls(A,(o) as the 
smallest ), for which the following inequality is true for all.)CE ,~,: 

/ \ J'-~ 
I,"' .... tf '- loglz.,.,,,(f2))~27,&i'" '(J] f )  (2.15) 

For ~ c ,e;/an interaction d~ is said to satisfy the DobrudTin-Shlosman 
mixing condition over .~- if there exist constant C,e(0 ,  co) ( i =  1, 2) such 
that for all a e ~ ,  . re / l ,  andfErr 

osc,.(/.,-"" f )  ~< Ci [Ifll exp d Y, Aj) �9 C2 ( 2 . 1 6 )  

In the sequel we will refer to the above condition as DSM(.W). 
It is convenient to introduce the following definition. We call a family 

{c( f )  >O}.r~, ~ an admissible coefficient if it satisfies 

sup {c(f) ;  Ilfll + d i a m z l r ~ m }  < co for all m > 0  (2.17) 
1" 

What (2.17) requires is that c(f)  should have an upper bound in terms of 
Ilfll and diamzl/,  which are independent of where el s is. Typically, 
const.llfll or const.ll[flll appears as the admissible coefficient c(f). 

R e m a r k  2.2. We could have worked in the continuous spin setting, 
in which the discrete spin space S is replaced by a smooth, compact 
Riemannian manifold (in fact, C ~- is enough). What we have defined above 
can easily be modified so that they make sense in the continuous spin 
setting and the all results as well as their proofs in this paper remain valid 
up to the value of constants and boring technicalities. 

3. THE RESULT 

First we recall the following result: 

T h e o r e m  3.1. ~lm Let .~ be either ,~ or ~,,(m) for arbitrarily fixed 
v6 Z u and m/> 1 [cf. (2.1), (2.3)]. Then each of the following conditions is 
equivalent to the DSM(.~)  [cf. (2.16)]: 
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(la) The logarithmic Sobolev constant [cf. (2.15)] satisfies 

sup ~LS(A, CO) < O0 (3.1) 

( lb)  The inverse spectral gap [cf. (2.14)] satisfies 

sup ),sa(A, co) < oo 
,/I E . ~ ,  to E 

(3.2) 

(lc) There exist a constant C > 0  and an admissible coefficient 
{c(f)>0}/.~,~. [cf. (2.17)] such that for a l l f e ~  and t > 0  

t 
sup IIT/'I-/~'"'"I[I <~c(f) e x p - ~  (3.3) 

/ |  ~ ,~". to E (2 

R e m a r k  3.1. In the original statement of this theorem [ref. 16, 
Theorem 1.8, part (c)] only the family J is under consideration. The 
statements for N,,(m) is implicit in the argument in that paper. The point 
is that both d and #,,(m) are closed under intersection and contain 
arbitrarily large cubes. The DSM condition restricted to boxes is easier to 
check than DSMC~r is. In fact, D S M ( d )  is known to be true for the Ising 
ferromagnet with f l<fl , . /2 or Ihl > 2 d  [ref. 5; see also ref. 3, (2.32) for 
the latter case], while the validity of DSM(#,,(2)) extends to Ihl > d - 1 .  
As mentioned in ref. 6, Remark 2.3, there is also a difference between 
DSM(#,,( 1 )) and DSM(#L.(m)) with a large m if d~> 3. The DSM condition 
based on cubes, together with an analogous statement to Theorem 3.1 in 
that context, is studied extensively in refs. 11-13 and 14. In this connection, 
it should be mentioned that ref. 11, Theorem 4.1, contains the following 
nice observation: if DSM( U,, ~ z; U,,, >1,,,. ~ . (m )) holds for some mo ~> 1, then 
DSM(U~,~z, U,,,>~,,,, ~,,(m)) holds for large enough mt >~ 1. 

Next, we state the main result of this paper. 

Theorem 3.2. Let ~ be either ~ '  or ~,,(m) for arbitrarily fixed 
v e Z a and m ~> 1 l-cf. (2.1), (2.3)]. Then each of the following conditions is 
equivalent to D S M ( ~ )  [cf. (2.16)]: 

(2a) The logarithmic Sobolev constant [cf. (2.15)] satisfies 

lim sup ~" ~ Ls(A, co) . } 1 
D ~  A~.~ ..... o ( $ ( d i a m A )  'd iamA>>'D < 4 0 ( d - 1 ) r i M t  (3.4) 

where $ ( t ) = t / l o g  t. The constants r~ and MI are given, respectively, by 
(2.8) and (2.11). 

8__/87, I-_-_1 
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(2b) The inverse spectral gap [cf. (2.14)] satisfies 

~" ),s~(A, o.)) . d' } 1 
lim sup ~O(diamA)'  mmA>~D <40(d 1 ) r jMi  (3.5) 

I )  ~ ~1_ / I  E . ~ ,  r E [ 2  

where r  t/log t. The constants r~ and M~ are given, respectively, by 
(2.8) and (2.11). 

(2c) There exists an admissible coefficient {c(f)>0}/~, , .  [cf. (2.17)] 
and a nonincreasing function ~ b : ( 0 , ~ ) ~ ( 0 , ~ )  such that r  
o(t -'~(a-t)) as t--* oo and such that 

sup /~'~ .... IT;"'"f-I~'"'"fl <~c(f)ck(t) for all J'6(6 ' (3.6) 

(2d) There exist C~ ~ (2, Go), an admissible coefficient {c(f) > 0}/~,~ 
and a nonincreasing function ~b:(0, o o ) ~ ( 0 ,  o~o) such that ~b(t)= 
o(t -2"~-~)) as t ~  c~ and such that 

osc.,.(p A f )  <~ c(f)  ck(d(y, A f)) (3.7) 

for all A ~.7, f ~  cr and y~O,.,,A which satisfy diam A <~ C~d(y, Af). 

(2e) There exists a nonincreasing function ~b: (0, c o ) ~  (0, o9) such 
that O(t)=o(t - ' -~ ) )  as t-~ co and such that 

osc,.(/~.", f )  ~ Ilfll ~b(d(y, A z)) (3.8) 

for all A e ~ , f e c ( ~ ,  and y~8,.,,A. 

R e m a r k  3.2. It follows from Theorem 3.2 that the condition (2a) 
or even (2b) implies (lc) in Theorem 3.1. This is reminiscent of ref. 8, 
Theorem 5.3. Although (2a) and (2b) require control over boxes, not only 
over cubes, the conclusion (lc) is quite rewarding as compared with that 
of the above-quoted reference. The bound 1/{40(d-  1) r~ M~ } on the right- 
hand sides of (3.4), (3.5) is technical and is in no way sharp. 

R e m a r k  3.3. It follows from Theorem 3.2 that (2c) implies (lc), 
which roughly says the following: if the rate of convergence of a Glauber 
dynamics is bounded by a certain negative power of the time t, then the 
convergence is necessarily exponentially fast in t. As is mentioned in the 
Introduction, this is not the first time a result of this kind has been 
obtained. For example, it is shown in ref. 15, Theorem 3.6, that L~-con - 
vergence as fast as t -~2'1+'~) implies exponentially fast L~'~-convergence. 
Also, it is mentioned in ref. 9, Remark 4.3, that L2-convergence as fast as 
t -~-~'t§ implies exponentially fast L-'-convergence. On the other hand, our 
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result [ ( 2 c ) ~ ( l c ) ]  says that L~-convergence faster than t - 2 ( ' / -  I) in the 
sense of (2c) is enough for exponentially fast L~-convergence, which 
improves two results mentioned above. It should also be mentioned that in 
the case S = { - 1, + 1 } and the flip rate is attractive, (lc) is also implied 
by the following condition: 

lim t d sup sup {(TJ' 'a., .)(+)--(T~"'"a., .)(--)} = 0  (3.9) 

where ( _+ ) stand for configurations with all spins equal to + 1. This follows 
from the proof of ref. 1, Theorem 4, with a slight adjustment in order to 
circumvent the lack of shift invariance. In d = 2  condition (2c) is milder 
than (3.9) (see ref. 1, Lemma 2.1). 

Remark 3.4. Condition (2e) says that the exponential decay in the 
definition of DSM(~-) is equivalent to a certain polynomial decay. Techni- 
cally, condition (2d) plays the role of a junction between a statement in 
terms of dynamics, like (2b) or (2c), and that in terms of equilibrium, like 
(2e) (cf. Lemmas 4.2 and 4.3). Let us compare condition (2d) with a similar 
condition in ref. 4. In ref. 4 it is proved that D S M ( ~ )  has the following 
relaxed criterion, which is called condition (IIIb) in that paper: there exists 
a nonincreasing function ~b: (0, oo)--+ (0, r such that ~b(t)= o(t -2(d-I)) as 
t--+ oo and such that 

osc . , . (# '"f)~l l f l l  ~ q~(Ix-yl)  (3.10) 
x E el / 

for all A~.Y-~, J ' s ~ , ,  and yeO,.,,A. As can easily be seen, condition (2d) 
relaxes condition (IIIb) even further. 

4. PROOF OF THEOREM 3.2 

L e m m a  4 . 1 .  Let  A c c  Z J a n d  o~ ~ ~ be fixed. Suppose that ~b(t) is 
a nonincreasing function such that l im,_ .~ ~b(t)= 0 and that 

it A .... [T,~' ' f -- lv<'"fl<~c(f)  qS(t) foral l  f ~ c g  and t > 0  (4.1) 

with some 6oefficient c(f). Then there exists C~ (0, oo) which depends only 
on the flip rate such that for all {f, g} c ~g 

pA, ,,,(f; g) ~" pA. ,,,(fg) -- lt"" "'fp" "g 

(d(zlj, zlg).~ + d(zlf, zl~) (4.2) 
<~c(f'g) ck k. lOM, r, J CH[flli'lligillexp 10,', ~ 
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where c( f ,  g ) = c ( f g ) +  Ilftl c ( g ) + c ( f ) I l g l l .  The constants rl and Mi are 
given respectively by (2.8) and (2.11). 

Proof. We first bound the left-hand side of (4.2) by three terms: 

~" .... I rA , . ' ( fg ) - -  r / . " f  . r~, , '~  

A, (o A, ro lz ITA, ' ' ( fg) -- T.,. (fg)l (4.3) 

+ /~ " I , .  (fg)-- T,. �9 T~ f . .  (4.4) 

+/jA .... TA. , , f .  A .... __TA.,,,f .  ,Og I , .  ~ r.,. g _ ,  ~ T A" (4.5) 

The condition (4.1) is available to bound the first and the third terms: 

(4.3) ~< g,,. ~0 iTA,,o,(fg)_l~A.,,,(fg)l +l~,,.,,~ ]T2. , , ( fg  ) _/~ A. ,,,(fg)l 

<~ c(fg)(r  + r (4.6) 

Similarly, 

(4.5) ~< ([If It c(g) + c ( f )  Ilgll )(~b(t) + r 

We now apply Proposition 4.18 of ref. 10, p. 40, to (4.4) to see that 

(4.4) ~ C IIlflll" IIIglll exp(4M, s - - ap )  

(4.7) 

where 6 = 1/2r~, p = d(Ai, d~), and C >  0 is a constant which depends only 
on the flip rate (cf. Remark 4.1 below). At this point we take s = d p / 5 M t .  
We then have by (4.6)-(4.8) that 

p,l .... IT)'~"~ - TA,~"f �9 l,~A . . . . .  gl 

<~ (c(fg) + [If[[ c(g) + c ( f )  [[g[[ )(~b(t) + ~b(~p/5M, )) 

ap 
+ c IIIflll. Illglll e x p -  T 

which proves (4.2) by letting t---, ~ .  QED 

R e m a r k  4.1. Since (TA, ' ' ) ,  1>o is not a shift-invariant particle 
system, (4.8) does not come from a direct application of ref. 10, Proposi- 
tion 4.18, but from a modification of the proof of that proposition, to be 
precise. The modification is simply to replace ),(x, y) by its upper bound 
) , j ( x -  y) (cf. Remark 2.1 ). The choice fi = 1/2r~ is possible for the following 

(4.8) 
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reason. Going back to the proof of the proposition, 6 has been chosen so 
that 

}-" ~,(x) exp(6 [x[) ~< 2M, (4.9) 
x E Z  d 

Since the left-hand side of (4.9) is not greater than exp(6rt) Mi ,  our choice 
6 = 1/2rt is more than enough. 

L e m m a  4.2. Le tCo~[O,  oo),C,~(O, o o ) , a n d ~ c d b e a r b i t r a r y .  
Suppose that there exists C2~ (0, ~ )  such that 

f ~'m(A, co) 
lim sup - -  - -  �9 diam A >~D; < C ,  (4.10) 

~. .~. , , ,~  ~ ( d i a m  A)' D ~  n ~  

where @(t)= t/log t. Then there exists C3E(0, oo) such that 

osc:,(p n. f )  ~< C3 [[[f]][ d(y,  A f) - ' / ' sc '  c2M,,.,) (4.11 ) 

for all A ~ ~-, f ~  Cgn, and y ~a, ,A which satisfy 

diam A <<. Ctd(y ,  `4f) + Co (4.12) 

The constants r~ and M t are given by (2.8) and (2.11), respectively. 

Proof. By (4.10), there exist 0 E (0, 1) and D >/1 such that 

sup,,,~ ~ 7sofA, co) CID 
~<0~< (4.13) 

C_, O(diam A) Ci D + Co 

for any A e o ~  with diamA~>D. To prove (4.11), we may assume 
p := d(y,  .4:) >1 D + r o, since the left-hand side of (4.11 ) is not greater than 
[llflll in any case. Let (co, co')Eg2-' be 
g = dp ~'' "/dl.t n'''. Note that 

][g[[ ~< exp(4 [[~[[) and 

Using these and Lemma 4.1, we have 

�9 [(an. ,,; _ a n .  ,,,) f [  = [pn. ,,,(g; f ) [  

~< c, [[If[I[ exp 

such that co '-co off y. We set 

A.ecAc~O,.o{y} 

p m r o  

10Mi r] 7sofA, co) 

/ 0  - -  I" 0 

lOr, 

(4.14) 

+ c2 Illflll e x p - - - -  (4.15) 
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Here and in what follows c; (i = 1, 2,...) stand for constants which are inde- 
pendent of A, f ,  and y. Since diam A >f p - r o/> D, we can take advantage 
of (4.13) and (4.12) to bound (4.14) from above as follows: 

(4.14) ~ c 3 IIIflll exp ( 

~< c3 IIIflll exp ( 

P log(C~p + Co)) 
10MI r l OC2( CI p + Co) / 

1 
log( C~ p + Co)'] 

lOCI C 2 M t r  I / 

~< c~ IIIflll p -,/~sc, c=,~,,.,~ (4.16) 

Similarly, we have that 

P (4.15) ~< c4 IIIflll e x p -  10rj 

~cs IIIflll p- , /~ ,oc ,  c,M,,.,, (4.17) 

Putting (4.16) and (4.17) together, we conclude (4.11). QED 

L e m m a  4.3. Let CI ~(2, ~ )  and n > 1 be such that 
n(4n-3)/2(n-1)z<~C~ and ~=9~L,(m ) for arbitrarily fixed v e Z  d and 
m >/1. Suppose that there exist an admissible coefficient { c ( f ) >  0}j~,~. and 
a nonincreasing function ~b: (0, ~ )  ~ (0, ~ )  such that 

OSCy(/.t 1'' f )  ~< c(f)  ~(d(y, A f)) (4.18) 

for all A ~ .~, f ~  ~A, and y E 0,.oA which satisfy diam A <~ C~ d(y, zl/). Then 
there exists C2 ~ (0, or) such that 

OSC.,.(/~A" "/) ~< C2 ]]fJl d(y, z]f) a-'  qb(d(y, zJf)-  2 m -  r0) (4.19) 

for all A ~ ,~, f e  ~gA, and y ~ O~,,A which satisfy d(y, zJs) >1 n(2m + ro). 
For ~ - =  ~ the same statement with m = 1 is true. 

Proof. Take A ~o~,f~cgA, and y~O,.,,A, which satisfy p :=d(y ,  zJs) >~ 
n(2m + ro). We are going to apply our assumption to A c~ F rather than A 
itself, where F is an element of ~,,(rn) we now define. We define Fk r ~g,,(m) 
( k = l ,  2,...) by 

r k = {x: d(x, Fo) <~km} 

where Fo is an element in cg~(m) such that diam Fo = m and y ~ Fo. We set 
F =  FK, where K=max{k~> 1: Fk c~zls= ~ } .  We then have by definition 
that 

Km <,% p <~ (K + 2) m (4.20) 



Dobrushin-Shlosman Mixing Condition 305 

and hence that 

K>I P---- 2 >~ 2(n - 1) (4.21) 
m 

For fixed ((o, co')~g22 with t o - o f  o f fy  we set g=dl~'~'""/d~z i~'''. Note that 

Ilgll ~< exp(4 114511), A ~ c A n O , . , , { y }  (4.22) 

and that for z ~ A ~ O,.,,F 

diam(Fr~ A)  <~ C i d( z, A., ) (4.23) 

The first two observations are standard. The third one can be seen as 
follows. We have by (4.22) and (4.20) that 

d(z,  A~) >1 lz -- Yl - r~ 

>1 K m -  r o 

= p - 2 m  - r 0 

n - 1  
> / ~  p (4.24) 

n 

By (4.20), (4.21), and (4.24), we get 

d i a m ( F n  A) ~ ( 2 K +  1 ) m 

<~ Cld( z ,  zl~) 

The proof of (4.19) comes down to the following estimate: 

lip r ~ ' -  ( g  - 1 )ll ~ C 2 ; " -  ~ ( p  - 2m - r0) (4.25) 
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In fact, 

1(/~,..,,-/~.1. o,)f l  = [ I - t A ' ' [ f ( g  - 1)]l 

Ilfll" IIIJ~A (g - 1)11 

On the other hand, (4.25) can be seen as follows: 

I/~ r~ ' l  ~ ( g -  1)1 = I/~A'"'(/~r~A'r 

~< sup { I p r ~ " l " r  
( r  2 

~< IA c~ O~,,FI sup osc:(p r~.,t, g )  
2 E A t~ Oro jr" 

< ~ c , p a - t c ( g )  sup ~ ( d ( z ,  A~)) 
2 E ,/1 r t'~rl I / "  

<<, c 2p a -  t ck(p - 2 m  - 1"o) 

The first equality comes from an identity: 1 = p A ' " ' g = p A ' " ' ( I Z S ' ~ A ' ' g ) .  The 
inequality in the fourth line is an application of (4.18) to F n  A ~.~, which 
is allowed by (4.23) under our present assumption. To proceed to the last 
line, we used (4.22). QED 

L e m m a  4.4. Let ~- be either s~' or .#,.(m) for arbitrarily fixed v e Z d 
and m >~ 1. Suppose that (2e) in Theorem 3.2 holds and set ~,. ,.= ~( Ix - Yl ). 
Then, 

1 
l i m  ~-~ 2 ~. ct.,.y=0 (4.26) 

- .x ' e  [ 0 ,  L )  d y e  ('~q~[O, L )  d 

and for all Xe  .~- and y r X 

IIV,./~ x f - l z  X ' v . f l l  ~ ~ IlVxfll ~.,..,. 
.~ 'E .V 

(4.27) 

Remark 4.2. A mixing property defined by the set of conditions 
(4.26) and (4.27) is essentially the same as the condition (GS2) in ref. 7 and 
the condition DSM(Y) in ref. 16. The condition turns out to be equivalent 
to D S M ( ~ )  in the end (cf. the proof of Theorem 3.2). 
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Proof. It is easy to see (4.26). In fact, 

Z E 
. v ~ [ O .  L )  d V ~ O r o [ O  L d 

~.,-..,. = ~ Z q~(Ix- yl)  
x E  [ 0 ,  L I  d . l '~Oro[O,  L )  'l 

L + ro 

Z E Z ~(m) 
m =  I y e O r o [ O ,  L )  d x:  Ix  'l = m  

L + ro 

<~c|L a-| ~ md-'r 
177 ~ ] 

and thus 

U Y'. E ~,..,<c, ~+~,, x~tO.L,; .... o~,,[,,. L,,' Z ,77 y'= , md-|ck(m) 

~ 0  as L--* (~ 

We next prove (4.27). Take  .Ye f f  and an al ignment {x,,7} '7',=, of points in 
X. Wesetlm " ~ . . . .  ~ r x . ~  '? = (x3j=.  | and J , ,  = t ~ .,,~=,7,. Note  first that  

Vxf(a)  = ~,, f 2t"'(d~t,,,) V.,.,,,f(~z,,,.a,,,,,) 
Ill = ] 

Using this expression, we have that 

V.,,px. ,,,f _px.  "V.,.f 

= f 2(ds)(# x" ....... -#x ' ' ) (dax )  f (ax" (co-s)x,) 

= - f  2(ds)(# x ....... - #x ' ' ) (dax )  Vx f (ax .  (o~- s),:,) 

= - X . . . . . . . .  

t71 ~ [ 

where ~o. s stands for a configurat ion obtained from a by replacing a.,, by 
s and 

f,,~(a) = f 2I"(d~,,,,) V.,.,,,f(~,,,. a/,,,.) 
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At this point, fix y and choose_ the alignment so that [:xj- Yl is nondecreas- 
ing in j =  1, 2 ..... Since IIf,,, II ~< IIV.,-,,,fll and "a.v~f,,,(av.(O).S)x,.)"~cgj .... 
we have by (4.28) and (2e) that 

IIV.,,~x"f -~x"V. , , f l l  < ~. IIV.,.,,fll ~(d(y, J,,,)) 
111 = I 

= ~ IIV.,-,,,fll q~(Ix,,,-yl) 

= ~ IIV,.fll cc ....... 
x E X  

This proves (4.27). QED 

Proof of  Theorem 3.2. In view of Theorem 3.1, all conditions in 
Theorem 3.2 are obviously necessary for the Dobrushin-Shlosman mixing 
condition (2.16) to be true. To show that (2a), (2b), (2d), and (2e) are suf- 
ficient, we prove the following sequence of implications: 

( 2 a ) = ( 2 b ) ~ ( 2 d ) ~ ( 2 e ) ~ ( l b )  (4.29) 

The condition (lb) is equivalent to the Dobrushin-Shlosman mixing condi- 
tion by Theorem 3.1. The condition (2a) immediately implies (2b), since 
)~s~ ~<)'Ls [ref. 2, p. 224, (6.1.7)]. Implication from (2b) to (2d) is a conse- 
quence of Lemma 4.2, and (2d) implies (2e) by Lemma 4.3. Now suppose 
that (2e) holds. This means that we may assume the conclusion of Lemma 
4.4. Then, by the argument used in Section 2 of ref. 16, we obtain (lb) in 
Theorem 3.1. See the derivation of Corollary 2.8 in that paper. This com- 
pletes the proof of (4.29). On the other hand, Lemma 4.1 says that (2c) 
implies (2d), and hence also (lb) by (4.29). QED 
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